# **SR320 THRU SR3100**

## SCHOTTKY BARRIER RECTIFIER



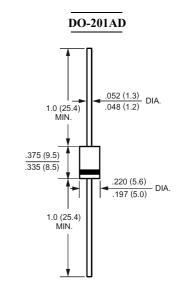
REVERSE VOLTAGE: 20 to 100 VOLTS FORWARD CURRENT: 3.0 AMPERE

http://www.njzrg.com

#### **FEATURES**

- · High current capability
- · High surge current capability
- · Low forward voltage drop
- · Exceeds environmental standards of MIL-S-19500/228
- · For use in low voltage, high frequency inverters free wheeling, and porlarlity protection applications

#### **MECHANICAL DATA**


Case: Molded plastic, DO-201AD Epoxy: UL 94V-O rate flame retardant

Lead: Axial leads, solderable per MIL-STD-202,

method 208 guaranteed

Polarity: Color band denotes cathode end

Mounting position: Any Weight: 0.04ounce, 1.1gram



Dimensions in inches and (millimeters)

### Maximum Ratings and Electrical Characteristics

Ratings at 25 ambient temperature unless otherwise specified.

Single phase, half wave,  $60H_Z$ , resistive or inductive load.

For capacitive load, derate current by  $20\%\,.$ 

|                                                                                                   | Symbols           | SR320                   | SR330 | SR340 | SR350 | SR360 | SR380 | SR3100 | Units |
|---------------------------------------------------------------------------------------------------|-------------------|-------------------------|-------|-------|-------|-------|-------|--------|-------|
| Maximum Recurrent Peak Reverse Voltage                                                            | V <sub>RRM</sub>  | 20                      | 30    | 40    | 50    | 60    | 80    | 100    | Volts |
| Maximum RMS Voltage                                                                               | V <sub>RMS</sub>  | 14                      | 21    | 28    | 35    | 42    | 56    | 70     | Volts |
| Maximum DC Blocking Voltage                                                                       | V <sub>DC</sub>   | 20                      | 30    | 40    | 50    | 60    | 80    | 100    | Volts |
| Maximum Average Forward Rectified Current .375"(9.5mm) Lead Length                                | I <sub>(AV)</sub> | 3.0                     |       |       |       |       |       |        | Amp   |
| Peak Forward Surge Current,<br>8.3ms single half-sine-wave                                        | I <sub>FSM</sub>  | 80                      |       |       |       |       |       |        | Amp   |
| superimposed on rated load (JEDEC method)                                                         |                   |                         |       |       |       |       |       |        |       |
| Maximum Forward Voltage at 3.0A DC and 25                                                         | $V_{\rm F}$       | 0.55                    |       |       | 0.70  |       | 0.85  |        | Volts |
| Maximum Reverse Current at T <sub>A</sub> =25<br>at Rated DC Blocking Voltage T <sub>A</sub> =100 | $I_R$             | 0.5<br>30               |       |       |       |       |       |        | mAmp  |
| Typical Junction Capacitance (Note 1)                                                             | $C_{J}$           | 300                     |       |       | 250   |       |       |        | pF    |
| Typical Thermal Resistance (Note 2)                                                               | $R_{\theta JA}$   | 40                      |       |       |       |       |       |        | /W    |
| Operating Junction Temperature Range                                                              | $T_{J}$           | -55 to +125 -55 to +150 |       |       |       |       |       |        |       |
| Storage Temperature Range                                                                         | Tstg              | -55 to +150             |       |       |       |       |       |        |       |

#### NOTES:

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal Resistance From Junction to Ambient 0.375"(9.5mm) lead length P.C.B. Mounted



### RATINGS AND CHARACTERISTIC CURVES

http://www.njzrg.com

FIG.1-TYPICAL FORWARD CURRENT DERATING CURVE

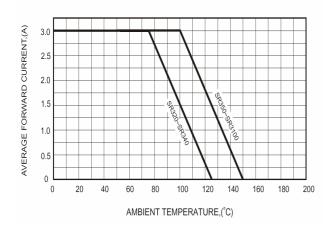
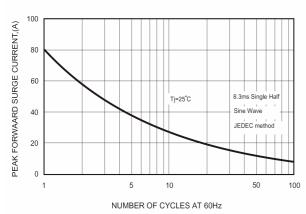
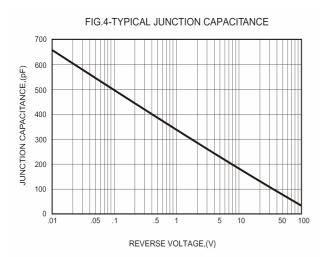
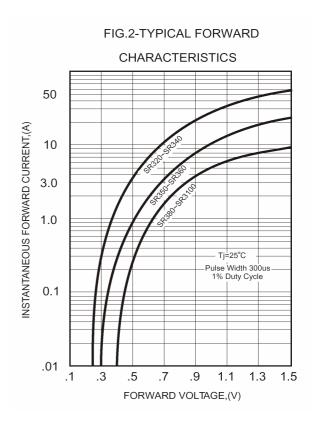






FIG.3-MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT







